3,728 research outputs found

    Differential Expression Of Gap Junction mRNAs And Proteins In The Developing Murine Kidney And In Experimentally Induced Nephric Mesenchymes

    Get PDF
    The expression of three gap junction (GJ) proteins, alpha-1 (Cx43), beta-1 (Cx32), and beta-2 (Cx26), and their transcripts were examined during the ontogeny of the mouse and rat kidney. These proteins were expressed in two non-overlapping patterns. The alpha-1 GJ protein was first observed in mesenchymal cells in the 12-day mouse kidney. By day 14 and thereafter, the ai protein was detected in the transient S-shaped bodies, but not in the podocytes of the maturing glomeruli. After birth the antigen was retained in a small subset of secretory tubules.The beta-1 and beta-2 GJ proteins were similar in their developmental patterns. They were first detected in a small subset of secretory tubules in the subcortical zone of day 17 embryos. These tubules were identified by immunohistochemical markers to be proximal. At birth, practically all proximal tubules expressed the two antigens.This analysis of GJ proteins was consistent with the results of S1 nuclease protection assays showing that, while the alpha-1 mRNA appeared early during kidney development and declined around birth, the two beta mRNAs appeared later and became intensified during the last days of intrauterine development.In experimentally induced metanephric mesenchymes, a transient expression of the alpha-1 GJ protein was seen during the segregation of the tubular anlagen. beta-1 and beta-2 GJ proteins were not detected in such induced mesenchymes cultivated up to 7 days.These observations provide evidence for the cell-specific utilization of different GJ genes during different stages of kidney organogenesis. The alpha-1 gene is activated during the early segregation of the secretory tubule and might contribute to its compartmentalization, while the beta-1 and beta-2 gene products are not detected until advanced stages of development. The latter gene products might be correlated with the physiological activity of the proximal tubules in vivo, as they are not expressed in experimentally induced tubules detectable with markers for proximal tubules

    The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506: Clinical significance and comparison with cyclosporine

    Get PDF
    The histopathological changes in 51 renal allograft biopsies from patients immunosuppressed with FK506 were compared with those seen in 30 needle biopsies obtained from patients on cyclosporine. The frequency and severity of rejection episodes were similar in both groups. Tubular vacuolation and myocyte vacuolation were found to be useful morphological markers to monitor short-term drug toxicity associated with both drugs. Long-term administration of FK506 led to striped interstitial fibrosis and arteriolar hyalinosis, similar to that previously documented for cyclosporine. One case each of hemolytic uremic syndrome and necrotizing arteriopathy was noted in patients receiving FK506. FK506 and cyclosporine are structurally unrelated compounds; hence the parallelism observed in their nephrotoxicity profile suggests that the interactions of these drugs with renal tissue involves the operation of two different initial signal-transducing mechanisms, ultimately activating the same final metabolic pathways

    MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    Get PDF
    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death

    Pharmacologic inhibition of RGD-binding integrins ameliorates fibrosis and improves function following kidney injury

    Get PDF
    Fibrosis is a final common pathway for many causes of progressive chronic kidney disease (CKD). Arginine-glycine-aspartic acid (RGD)-binding integrins are important mediators of the pro-fibrotic response by activating latent TGF-β at sites of injury and by providing myofibroblasts information about the composition and stiffness of the extracellular matrix. Therefore, blockade of RGD-binding integrins may have therapeutic potential for CKD. To test this idea, we used small-molecule peptidomimetics that potently inhibit a subset of RGD-binding integrins in a murine model of kidney fibrosis. Acute kidney injury leading to fibrosis was induced by administration of aristolochic acid. Continuous subcutaneous administration of CWHM-12, an RGD integrin antagonist, for 28 days improved kidney function as measured by serum creatinine. CWHM-12 significantly reduced Collagen 1 (Col1a1) mRNA expression and scar collagen deposition in the kidney. Protein and gene expression markers of activated myofibroblasts, a major source of extracellular matrix deposition in kidney fibrosis, were diminished by treatment. RNA sequencing revealed that inhibition of RGD integrins influenced multiple pathways that determine the outcome of the response to injury and of repair processes. A second RGD integrin antagonist, CWHM-680, administered once daily by oral gavage was also effective in ameliorating fibrosis. We conclude that targeting RGD integrins with such small-molecule antagonists is a promising therapeutic approach in fibrotic kidney disease

    Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals

    Get PDF
    Objective: To assess histopathological changes in clinically envenomed tiger snake patients and identify tissue specific localisation of venom toxins using immunohistochemistry. Samples: One feline and one canine patient admitted to the Murdoch Pet Emergency Centre (MPEC), Murdoch University with tiger snake (Notechis sp.) envenoming. Both patients died as a result of envenomation. Non-envenomed tissue was also collected and used for comparison. Methodology: Biopsy samples (heart, lung, kidney andskeletal muscle tissue) were retrieved 1-2 h post death and processed for histopathological examination using Haemotoxylin and Eosin, Martius Scarlet Blue and Periodic Acid Schiff staining. Tissues were examined by light microscopy and tissue sections subjected to immunohistochemical staining using in-house generated monoclonal and polyclonal antibodies against Notechis venoms. Results: Venom-induced pathological changes were observed in the lungs, kidneys and muscle tissue of both patients. Evidence, not previously noted, of procoagulant venom effects were apparent, with formed thrombi in the heart, lungs (small fibrillar aggregates and larger, discrete thrombi) and kidneys. Immunohistochemical assays revealed venom present in the pulmonary tissue, in and around the glomerular capsule and surrounding tubules in renal tissue and scattered throughout the Gastrocnemius muscle tissue. Conclusion: This work has shown pathological evidence of procoagulant venom activity supporting previous suggestions that an initial thrombotic state occurs in envenomed patients. We have shown that venom toxins are able to be localised to specific tissues, in this case, venom was detected in the lung, kidney and muscle tissues of clinically envenomed animals. Future work will examine specific toxin localisation using monoclonal antibodies and identify if antivenom molecules are able to reach their target tissues

    Expression of Ksp-cadherin during kidney development and in renal cell carcinoma

    Get PDF
    Cadherins are a large family of cell–cell adhesion molecules acting in a homotypic, homophilic manner that play an important role in the maintenance of tissue integrity. In the human kidney, several members of the cadherin family (including E- and N-cadherin, cadherin-6, -8 and -11) are expressed in a controlled spatiotemporal pattern. Cadherin-16, also called kidney-specific (Ksp-) cadherin, is exclusively expressed in epithelial cells of the adult kidney. In renal cell carcinomas (RCCs), which are considered to originate from epithelial kidney tubular cells, a complex pattern of cadherin expression can be observed, but Ksp-cadherin expression has not been analysed so far. In the present study, we show that the expression of Ksp-cadherin is completely abrogated in RCCs. Whereas Ksp-cadherin can be detected at later stages of tubulogenesis during human renal development and in the distal tubules of adult kidneys, no expression was found by immunohistochemistry or Western blot analysis in RCC tumour tissues and several RCC cell lines. However, despite the lack of protein expression, mRNA synthesis of Ksp-cadherin could be detected by reverse transcriptase–polymerase chain reaction analysis in all RCC tissues and most of the RCC cell lines studied, although at a reduced level. The loss of Ksp-cadherin protein was only observed in the malignant part of the tumour kidneys, whereas in the normal part of the affected kidneys Ksp-cadherin expression was clearly detected. These results indicate a downregulation of Ksp-cadherin in RCC and suggest a role for this cell adhesion molecule in tumour suppression

    A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys

    Get PDF
    Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples
    • …
    corecore